
Formal Safety Certification of Aerospace Software

Ewen Denney and Bernd Fischer
{edemey,fisch}@email .arc .nasa.gov

USRA/RIACS. NASA Ames Research Center, Moffett Field, CA 94035, USA

In principle, formal methods offer many advantages for aerospace software development: they can help
to achieve ultra-high reliability, and they can be used to provide evidence of the reliability claims which
can then be subjected to external scrutiny. However, despite years of research and many advances in the
underlying formalisms of specification, semantics, and logic, formal methods are not much used in practice.
In our opinion this is related to three major shortcomings. First, the application of formal methods is still
expensive because they are labor- and knowledge-intensive. Second, they are difficult to scale up to complex
systems because they are based on deep mathematical insights about the behavior of the systems (Le., they
rely on the “heroic proof’). Third, the proofs can be difficult to interpret, and typically stand in isolation
from the original code.

In this paper, we describe a toofforformally demonstrating safety-relevant aspects of aerospace software,
which largely circumvents these problems. We focns on safeLy properties because it has been observed’
that safety violations such as out-of-bounds memory accesses or use of uninitialized variables constitute the
majority of the errors found in the aerospace domain. In our approach, safety means that the program will
not violate a set of rules that can range for the simple memory access rules to high-level flight rules. These
different safety properties are formalized as different safety policies in Hoare logic, which are then used by a
verification condition generator along with the code and logical annotations in order to derive formal safety
conditions; these are then proven using an automated theorem prover. Our certification system is currently
integrated into a model-based code generation toolset that generates the annotations together with the code.
However, this automated formal certification technology is not exclusively constrained to our code generator
and could, in principle, also be integrated with other code generators such as RealTime Workshop or even
applied to legacy code.

Our approach circumvents the historical problems with formal methods by increasing the degree of
automation on all levels. The restriction to safety policies (as opposed to arbitrary functional behavior)
results in simpler proof problems that can generally be solved by fully automatic theorem provem2 -4n
automated linking mechanism between the safety conditions and the code provides some of the traceability
mandated by process standards such as DO-178B.3 An automated explanation mechanism uses semantic
markup added by the verification condition generator to produce natural-language explanations of the safety
conditions and thus supports their interpretation in relation to the code. Figure 1 shows an automatically
generated certification browser that lets users inspect the (generated) code along with the safety conditions
(including textual explanations), and uses hyperlinks to automate tracing between the two levels. Here,
the explanations reflect the logical structure of the safety obligation but the mechanism can in principle be
customized using different sets of domain concepts. The interface also provides some limited control over
the certification process itself.

Our long-term goal is a seamless integration of certification, code generation, and manual coding that
results in a “certified pipeline‘’ in which specifications are automatically transformed into executable code,
to ether wit ’ art’ ne
needed in the aerospace domain.

1 of 2

American Institute of Aeronautics and Astronautics

init-certification of quaternion-dsi (1

Prover Control

2 1 9 :

220:
??I ’
2 1 : :

??3:

229.

225:

2 2 6 :

227:

“ a :
*-q . _ _ _ .

Figure 1. Certification browser ,

References
‘Kandt, R., “Software Defect Avoidance and Detection: Practices and Techniques,” Tech. rep., JPL, 2003, Document

2DenneY, E., Fixher, B., and Schumann, J., “Using Automated Theorem Provers to Certify Auto-Generated Aerospace
Software,” Proceedings of the 2nd International Joint Conference on Automated Reasoning (IJCAR ’Od), Vol. 3097 of Lecture
Notes in Artificial Intelligence, Cork, Ireland, 2004, pp. 198-212.

3RTCA Special Committee 167, “Software Considerations in Airborne Systems and Equipment Certification,” Tech. rep.,
RTCA, Inc., Dec. 1992.

D-24993.

2 of 2

American Institute of Aeronautics and Astronautics

